您的位置>> 首 页 > 新闻动态 > 学术动态 > 阅读正文
学术动态
学术报告第87场 Prof. Liu Xiang Yang、姜源副教授的报告
发表于: 2017-10-16 14:41  点击:
报名截止:2017-10-17 11:00:00 已报名:127 总名额:180 

报告题目Soft Functionalization of Silk Fibroin Materials and Bio-Flexible Devices

报告人:Prof. Liu Xiang Yang

 

报告题目:利用仿生矿化手段构筑碳酸钙棱柱薄膜

报告人:姜源博士,副教授

 

报告时间:2017年10月17日(周二),下午2:30

报告地点:无机超分子楼二楼圆形报告厅

 

报告人简介:

Professor Liu Xiang Yang received his Ph.D. degree with the cum laude title from the Radboud University Nijmegen (Netherlands), in 1993. After two years postdoc research, he joined the Unilever Research Port Sunlight Lab. as a Senior Scientist. Dr. Liu joined the Department of Physics, the National University of Singapore in 1999, as a full Professor. He is also currently the State Distinguished Professor of The 1000 Talent Program, Chair Professor of China MOE Changjiang Scholars Program. Professor Liu Xiang Yang received his Ph.D. degree with the cum laude title from the Radboud University Nijmegen (Netherlands), in 1993. After two years postdoc research, he joined the Unilever Research Port Sunlight Lab. as a Senior Scientist. Dr. Liu joined the Department of Physics, the National University of Singapore in 1999, as a full Professor. He is also currently the State Distinguished Professor of The 1000 Talent Program, Chair Professor of China MOE Changjiang Scholars Program.

 

姜源副教授于2013年加入厦门大学材料学院生物材料系,研究工作主要依托生物仿生与软物质研究院。研究主旨为介观工程(Mesoscopic Engineering),即通过控制物质在介观尺度上的组装行为来制备功能材料,介观工程内容包括胶体(纳米)颗粒组装、(生物)大分子结晶及组装、仿生矿化三个子方向。研究通过在介观尺度上设计有效的界面修饰手段,结合适合的动力学因素,实现可控组装,期待制备结构可控的晶体及杂化材料,其性能直接或间接取决于目标材料在介观尺度上的结构信息。为实现上述目的,我们通过控制组装单元的溶液相信息及基底表面的介观结构等参数,对目标材料的形成位置、尺寸、形态、取向、手性等一系列参数进行调控和优化,达到可控制备功能材料的目的,最终使得合成材料具备与生物材料相仿或者更佳的性能。创造和开发新颖有效的介观工程手段将会为新一代材料制备提供方法论和先进功能材料,为亟待解决的一些能源、健康、环保相关的社会问题提供有力的解决方案。

 

报告摘要:

The report of Professor Liu Xiang Yang :Bombyx mori silk fibers have been utilized as a textile material for over 7000 years. Nevertheless, the application of silk fibroin materials to fabricating flexible photoelectric devices has become popular since the beginning of this century. As an excellent flexible biomaterial, silk fibroin materials offer exquisite mechanical, optical, and electrical properties which are advantageous toward the development of next-generation biocompatible electronic devices. In turning SF materials into bio-soft devices, to acquire some particular performance is very crucial. In this concern, to re-engineer the hierarchical structure of soft materials and to functionalize the materials are the two common approaches to achieve the functions. The functionality of soft materials is originated from the synergy of structures among different levels. In contrast to the conventional hard materials that various functions can be acquired by doping or re-constructing at atomic/molecular levels, re-constructing the hierarchical structure of soft/SF materials at the mesoscale is the major way to acquire different performance. Furthermore, in functionalize SF materials, a systematic approach, so-called Mesoscopic Material Assembly (MMA) has been put forward, which is to add and bind some specific nanomaterials or molecule to the networks so as to acquire some additional functions without jeopardizing the original performance. In this talk, I will cover the principles and strategies of mesoscopic structural re-engineering and functionalization of SF materials, which allows in the design and integration of high-performance bio-integrated devices for future applications in consumer, biomedical diagnosis, and human–machine interfaces.

 

 

姜源副教授的报告:仿生结晶能够在温和条件下制备一系列性能优异的高级复合材料。但迄今为止,仿生结晶的研究方法和手段仍亟待突破。比如说,制备高度结构仿生和功能仿生的复合材料仍然缺乏可控的制备方法。我们实验室以碳酸钙矿物为例,成功的制备了一系列空间有序且连续的棱柱薄膜,其微结构与贝壳中的棱柱层结构高度相似。本研究是建立在种子层外延结晶的基础上。我们首先在高分子基底表面构筑了一层颗粒状的碳酸钙-聚电解质连续复合薄膜,然后利用上述薄膜作为种子层诱导外延结晶,从而构筑了连续有序的棱柱层碳酸钙外延薄膜。此外延薄膜与对应的生物矿物不但微结构高度相似,而且展现出了相似的力学性能。在外延结晶的过程中,我们也通过可溶性高分子的存在,在外延层结构中引入了微米-纳米多级有序结构,使得碳酸钙薄膜自发具备了水下超疏油性能。在成功的建立了种子层矿化手段后,我们通过采用不同的高分子基底和可溶性高分子添加剂的组合,成功制备一系列具有有序微纳结构的仿生碳酸钙薄膜。此方法成功的实现了仿生结晶中的三个重要结构参数的调控,暨特定微纳结构、高度有序、宏观连续性。在尼龙网表面生长上述碳酸钙薄膜后,尼龙网可以实现重力驱动的油水分。

版权所有:吉林大学化学学院  © 2017 邮箱:chembg@jlu.edu.cn
地址:吉林省长春市前进大街2699号 邮编:130012