有机发光自由基是自由基家族中比较特殊的一类化合物,集光、电、磁性质于一身。在有机磁学、自旋电子学、有机光电、荧光探针和化学传感等领域具有广阔的应用前景。吉林大学李峰教授研究组2015年创新性地提出并实现了自由基的双线态电致发光(Angew. Chem. Int. Ed.2015,54, 7091)。以此为开端,自由基发光材料与器件效率不断提高(ACS Appl. Mater. Interfaces2016,8, 35472;Chem. Mater.2017,29, 6733;J. Phys. Chem. Lett.2018,9, 6644)。此后李峰课题组与剑桥大学Richard Friend课题组合作报道了内量子效率(IQE)接近100%理论极限的深红光自由基双线态有机电致发光器件(OLED)(Nature2018,563, 536)以及与剑桥大学Richard Friend课题组和佐治亚理工学院Jean-Luc Brédas教授课题组合作报道了不遵循构造原理高稳定高发光效率的发光自由基(Nat. Mater.2019,18, 977)。研究团队还首次制备出了稳定的室温发光二苯甲基自由基(Angew. Chem. Int. Ed.2018,57, 2869)和固态发光的自由基聚合物(Mater. Horiz.2019,6, 1265),拓展了发光自由基的材料体系。这一系列成果获得了国内外同行的高度认可和评价。

该课题组近年来深入研究了自由基的发光特性,并阐明了发光机理。根据上世纪50年代的理论研究,具有交替对称分子结构的有机自由基的HOMO-SOMO与SOMO-HOMO的能隙简并,由于异相(out-of-phase)耦合,基态(D0)至第一激发态(D1)的跃迁振子强度为零,这可能是大部分自由基不发光的根本原因之一。据此,最近李峰课题组与剑桥大学Richard Friend课题组合作提出采用具有电子给体或受体特征的非交替取代基来修饰自由基,这样能够打破整个分子的交替对称性,消除HOMO-SOMO与SOMO-HOMO的能隙简并,并且根据“强度借用”微扰理论,自由基HOMO与电子给体HOMO或自由基LUMO与电子受体LUMO之间的相互作用能够提高D0到D1的跃迁振子强度和相应的D1到D0发光性能。由此研究团队提出发光自由基的分子设计思想:构建具有非交替对称结构的有机发光自由基分子;外围取代基与自由基中心的连接原子位点具有强的轨道振幅。基于上述分子设计策略,研究团队以TTM为受体(acceptor),以不同氮位置的咔唑啉作为给体(Donor)得到了一系列D-A型高效饱和红光自由基材料,溶液光致发光效率(PLQE)达到99%(如下图所示)。以这些自由基作为发光层制备的纯红光OLED最大外量子效率(EQE)达到12.2%,器件CIE坐标完全符合标准红光CIE坐标(0.67, 0.33)。该研究是发光自由基及OLED研究领域的重要进展,通用的分子设计规则将会指导更多发光自由基材料的设计与合成,相关成果发表在Nat. Mater.上(2020,DOI: 10.1038/s41563-020-0705-9),共同一作Alim Abdurahman为我院博士研究生,现为我院鼎新学者。

交替碳氢化合物TTM自由基(不发光)与非交替碳氢化合物咔唑啉相连打破整个分子的交替对称性而发光。